
 

 

 

Abstract—This work describes a numerical tool to perform 

thermochemical non-equilibrium simulations of reactive flow in 

three-dimensions. The Van Leer and Liou and Steffen Jr. schemes, in 

their first- and second-order versions, are implemented to accomplish 

the numerical simulations. The Euler and Navier-Stokes equations, 

on a finite volume context and employing structured and unstructured 

spatial discretizations, are applied to solve the “hot gas” hypersonic 

flow around a blunt body, in three-dimensions. The second-order 

version of the Van Leer and Liou and Steffen Jr. schemes are 

obtained from a “MUSCL” extrapolation procedure  in a context of 

structured spatial discretization. In the unstructured context, only 

first-order solutions are obtained. The convergence process is 

accelerated to the steady state condition through a spatially variable 

time step procedure, which has proved effective gains in terms of 

computational acceleration. The reactive simulations involve a Mars 

atmosphere chemical model of nine species: N, O, N2, O2, NO, CO2, 

C, CO, and CN, based on the work of Kay and Netterfield. Fifty-three 

chemical reactions, involving dissociation and recombination, are 

simulated by the proposed model. The Arrhenius formula is 

employed to determine the reaction rates and the law of mass action 

is used to determine the source terms of each gas species equation. 

The results have indicated the Van Leer TVD scheme as presenting 

good solutions, both inviscid and viscous cases. 

 

Keywords— Thermochemical non-equilibrium, Mars entry, Nine 

species model, Hypersonic “hot gas” flow, Finite volume, Euler and 

Navier-Stokes equations, Three-dimensions.  

I. INTRODUCTION 

HERE has been significant interest in recent years in a 

mission to Mars. One such proposal is the MARSNET 

assessment study [1] concerning the potential contribution of 

ESA (European Space Agency) to a Mars Network mission in 

cooperation with NASA. NASA is currently studying a 

network mission MESUR (Mars Environmental Survey), 

involving the placement of up twenty small scientific stations 
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on the surface of Mars. The objective of the proposed ESA 

activities is the provision of three of these stations to perform a 

variety of scientific experiments. The intended entry scenario 

is an unguided ballistic entry at a typical velocity of 6 km/s 

using a blunt sphere/cone configuration in which deceleration 

is provided predominantly by hypersonic aero-braking. It is 

important that the mass of the vehicle structure and thermal 

protection system (TPS) be minimized such that the payload 

delivered to the surface may be maximized. 

 The trajectory for a ballistic Martian entry takes the vehicle 

through regions where thermochemical non-equilibrium effects 

in the surrounding shock layer may be significant. For typical 

entry velocities (> 5 km/s) the temperature in the shock layer 

will be sufficiently high for dissociation of the freestream 

species to occur. The energy removed through such reactions 

may be released at the vehicle surface via recombination 

leading to significantly enhanced heat transfer rates. In order 

to design the TPS for minimum mass the heat transfer rate 

needs to be accurately predicted. This requires that any 

catalytic properties of the TPS material are accounted for in 

the heat transfer rate calculation since these will determine the 

extent of wall recombination. 

 As aforementioned, missions to other planets remain an 

objective for the ESA, and such missions generally involve the 

entry of a space vehicle into the atmospheres of those planets. 

In the context of such entry, aerothermodynamics is one of the 

critical technologies. While the thermochemical behavior of 

air under re-entry conditions has been studied extensively, and 

is to some degree understood, the same is not true for entries 

into other atmospheres. The atmospheres of Mars and Venus, 

for example, contain significant amounts of carbon dioxide. In 

particular, the Mars atmosphere is a mixture of approximately 

96% CO2 and 4% N2, with pressures much lower than the 

Earth’s atmosphere, so for any entry into the Martian 

atmosphere the non-equilibrium behavior of CO2 is likely to be 

of importance for a typical blunt body entry vehicle. This 

includes not just the influence of thermochemistry on the 

forebody heatshield flowfield, but also the influence on the 

shoulder expansion, base flow, and base heating environment. 

 Analyzing the reentry flows in Earth, [2] have proposed a 

numerical tool implemented to simulate inviscid and viscous 

flows employing the reactive gas formulation of thermal and 

chemical non-equilibrium in two-dimensions. The [3] 

numerical algorithm was implemented to perform the 

numerical experiments. The Euler and Navier-Stokes 

equations, employing a finite volume formulation, on the 

context of structured and unstructured spatial discretizations, 
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were solved. These variants allowed an effective comparison 

between the two types of spatial discretization aiming verify 

their potentialities: solution quality, convergence speed, 

computational cost, etc. The aerospace problem involving the 

hypersonic flow around a blunt body, in two-dimensions, was 

simulated. The reactive simulations involved an air chemical 

model of five species: N, O, N2, O2 and NO. Seventeen 

chemical reactions, involving dissociation and recombination, 

were simulated by the proposed model. The Arrhenius formula 

was employed to determine the reaction rates and the law of 

mass action was used to determine the source terms of each 

gas species equation. A spatially variable time step was 

employed aiming to obtain gains in terms of convergence 

acceleration. Such gains were demonstrated in [4-5]. Good 

results were obtained with such code. 

 [6] have presented a numerical tool implemented to 

simulate inviscid and viscous flows employing the reactive gas 

formulation of thermal and chemical non-equilibrium in three-

dimensions. The [3] numerical algorithm was implemented to 

perform the numerical experiments. The Euler and Navier-

Stokes equations, employing a finite volume formulation, on 

the context of structured and unstructured spatial 

discretizations, were solved. The aerospace problem involving 

the hypersonic “hot gas” flow around a blunt body, in three-

dimensions, was simulated. The reactive simulations involved 

an air chemical model of five species: N, O, N2, O2 and NO. 

Seventeen chemical reactions, involving dissociation and 

recombination, were simulated by the proposed model. The 

Arrhenius formula was employed to determine the reaction 

rates and the law of mass action was used to determine the 

source terms of each gas species equation. A spatially variable 

time step was employed aiming to obtain gains in terms of 

convergence acceleration. Such gains were demonstrated in [4-

5]. In that first part, only the structured solutions were 

presented. The unstructured solutions will be shown in the 

second part of such study. 

 [7] have proposed a numerical tool implemented to 

simulate inviscid and viscous flows employing the reactive gas 

formulation of thermochemical non-equilibrium in three-

dimensions. The [3] and [8] numerical algorithms were 

implemented to perform the numerical experiments. The Euler 

and Navier-Stokes equations, employing a finite volume 

formulation, on the context of structured and unstructured 

spatial discretizations, are solved. The aerospace problem 

involving the hypersonic flow around a blunt body, in three-

dimensions, was simulated. The reactive simulations involved 

an air chemical model of seven species: N, O, N2, O2, NO, 

NO
+
 and e

-
. Eighteen chemical reactions, involving 

dissociation, recombination and ionization, were simulated by 

the proposed model. Such model was suggested by Blottner 

([9]). The Arrhenius formula was employed to determine the 

reaction rates and the law of mass action was used to 

determine the source terms of each gas species equation. A 

spatially variable time step was employed aiming to obtain 

gains in terms of convergence acceleration. Such gains were 

demonstrated in [4-5]. In this work, it was only presented the 

structured formulation and solutions. The unstructured 

formulation and solutions will be presented in the second part 

of this study, which treats exclusively the unstructured context. 

 This work, first part of this study, describes a numerical 

tool to perform thermochemical non-equilibrium simulations 

of reactive flows in three-dimensions in Mars atmosphere. The 

[3; 8] schemes, in their first- and second-order versions, are 

implemented to accomplish the numerical simulations. The 

Euler and Navier-Stokes equations, on a finite volume context 

and employing structured and unstructured spatial 

discretizations, are applied to solve the “hot gas” hypersonic 

flow around a blunt body, in three-dimensions. The second-

order version of the [3; 8] schemes are obtained from a 

“MUSCL” extrapolation procedure (details in [10]) in a 

context of structured spatial discretization. In the unstructured 

context, only first-order solutions are obtained. The 

convergence process is accelerated to the steady state 

condition through a spatially variable time step procedure, 

which has proved effective gains in terms of computational 

acceleration (see [4-5]). 

 The reactive simulations involve a Mars atmosphere 

chemical model of nine species: N, O, N2, O2, NO, CO2, C, 

CO, and CN. Fifty-three chemical reactions, involving 

dissociation and recombination, are simulated by the proposed 

model. The Arrhenius formula is employed to determine the 

reaction rates and the law of mass action is used to determine 

the source terms of each gas species equation. 

 The results have demonstrated that the most conservative 

scheme is due to [8], although the [3] scheme is more robust, 

providing results to the second-order viscous case. Moreover, 

the [3] scheme presents the best mass fraction profiles at the 

stagnation line, characterizing discrete dissociation of CO2 and 

formation of CO. 

  

II. FORMULATION TO REACTIVE FLOW IN THERMOCHEMICAL 

NON-EQUILIBRIUM 

A. Reactive Equations in Three-Dimensions 

The reactive Navier-Stokes equations in thermal and 

chemical non-equilibrium were implemented on a finite 

volume context, in the three-dimensional space. In this case, 

these equations in integral and conservative forms can be 

expressed by: 

 

  




V V

CV

S

dVSdSnFQdV
t


, with 

                   kGGjFFiEEF veveve


 ,            (1) 

 
where: Q is the vector of conserved variables, V is the volume 

of a computational cell, F


 is the complete flux vector, n


 is the 

unity vector normal to the flux face, S is the flux area, SCV is 

the chemical and vibrational source term, Ee, Fe and Ge are the 

convective flux vectors or the Euler flux vectors in the x, y and 

z directions, respectively, Ev, Fv and Gv are the viscous flux 

vectors in the x, y and z directions, respectively. The i


, j
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and k


 unity vectors define the Cartesian coordinate system. 

Fourteen (14) conservation equations are solved: one of 

general mass conservation, three of linear momentum 

conservation, one of total energy, eight of species mass 

conservation and one of the vibrational internal energy of the 

molecules. Therefore, one of the species is absent of the 

iterative process. The CFD (“Computational Fluid Dynamics”) 

literature recommends that the species of biggest mass fraction 

of the gaseous mixture should be omitted, aiming to result in a 

minor numerical accumulation error, corresponding to the 

biggest mixture constituent (in this case, the Mars 

atmosphere). To the present study, in which is chosen a 

chemical model to the Mars atmosphere composed of nine (9) 

chemical species (N, O, N2, O2, NO, CO2, C, CO, and CN) and 

fifty-three (53) chemical reactions, this species is the CO2. The 

vectors Q, Ee, Fe, Ge, Ev, Fv, Gv and SCV can, hence, be defined 

as follows ([11]): 
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in which:  is the mixture density; u, v and w are Cartesian 

components of the velocity vector in the x, y and z directions, 

respectively; p is the fluid static pressure; e is the fluid total 

energy; 1, 2, 3, 4, 5, 7, 8, and 9 are densities of the N, 

O, N2, O2, NO, C, CO and CN, respectively; H is the mixture 

total enthalpy; eV is the sum of the vibrational energy of the 

molecules; the ’s are the components of the viscous stress 

tensor; qf,x, qf,y and qf,z are the frozen components of the 

Fourier-heat-flux vector in the x, y and z directions, 

respectively; qv,x, qv,y and qv,z are the components of the 

Fourier-heat-flux vector calculated with the vibrational thermal 

conductivity and vibrational temperature; svsx, svsy and svsz 

represent the species diffusion flux, defined by the Fick law; 

x, y and z are the terms of mixture diffusion; v,x, v,y and 

v,z are the terms of molecular diffusion calculated at the 

vibrational temperature; s  is the chemical source term of 

each species equation, defined by the law of mass action; *
ve  is 

the molecular-vibrational-internal energy calculated with the 

translational/rotational temperature; and s is the translational-

vibrational characteristic relaxation time of each molecule. 
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 The viscous stresses, in N/m
2
, are determined, according to 

a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. 

 The frozen components of the Fourier-heat-flux vector, 

which considers only thermal conduction, are defined by: 
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where kf is the mixture frozen thermal conductivity, calculated 

conform presented in section C. The vibrational components 

of the Fourier-heat-flux vector are calculated as follows: 
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in which kv is the vibrational thermal conductivity and Tv is the 

vibrational temperature, what characterizes this model as of 

two temperatures: translational/rotational and vibrational. The 

calculation of Tv and kv are presented in section C. 

 The terms of species diffusion, defined by the Fick law, to a 

condition of thermal non-equilibrium, are determined by 

([11]): 
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with “s” referent to a given species, YMF,s being the molar 

fraction of the species, defined as: 
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and Ds is the species-effective-diffusion coefficient. 

 The diffusion terms x, y and z which appear in the energy 

equation are defined by ([12]): 
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being hs the specific enthalpy (sensible) of the chemical 

species “s”. The specific enthalpy is calculated as function of 

the several modes of internal energy as follows: 
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The molecular diffusion terms calculated at the vibrational 

temperature, v,x, v,y and v,z, which appear in the vibrational-

internal-energy equation are defined by ([11]): 
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Table 1. Molecular mass and enthalpy formation of each 

species. 

 

Species M (g/g-mol) hf,s (J/g-mol) 

N 14.0 472,680.0 

O 16.0 249,180.0 

N2 28.0 0.0 

O2 32.0 0.0 

NO 30.0 90,290.0 

CO2 44.0 -393,510.0 

C 12.0 716,680.0 

CO 28.0 -110,530.0 

CN 26.0 435,100.0 

 

with hv,s being the specific enthalpy (sensible) of the chemical 

species “s” calculated at the vibrational temperature Tv. The 

sums of the Eqs. (23-24), as also those present in Eq. (7), 

considers only the molecules of the system, namely: N2, O2, 
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NO, CO2, CO and CN. 

 The molecular mass and the formation enthalpy of each 

constituent of the Mars atmosphere are given in Tab. 1. Note 

that to have hf,s in J/kg, it is only necessary to multiply it by 

10
3
 and to divide it by the molecular mass. 

B. Chemical Model and Reaction Data 

The following species are considered for entry into the 

Martian atmosphere: 

 

N, O, N2, O2, NO, CO2, C, CO, and CN. 

 

These species represent the main constituents of a high 

temperature mixture of carbon dioxide and nitrogen. The CN 

molecule is included for assessment purposes though is not 

expected to be present in large mass fractions. For the 

moderate entry velocities considered in this work ionization is 

assumed to be unimportant, thus no ionic species are 

considered. This chemical model is based on the work of [13]. 

The reaction set used for these calculations is given in Tab. 2. 

Reverse reaction rate data are specified directly in Tab. 3. It is 

assumed that both the forward and reverse reaction rate 

coefficients have the following Arrhenius temperature 

dependence: 

 

                                         T/CeATk  ,                             (25) 

 

Table 2. Reactions and forward coefficients. 

 

Reaction A  C 

O2+M  O+O+M 9.1x10
18

 -1.0 59,370 

N2+M  N+N+M 2.5x10
19

 -1.0 113,200 

NO+M  N+O+M 4.1x10
18

 -1.0 75,330 

CO+M  C+O+M 4.5x10
19

 -1.0 128,900 

CO2+M  CO+O+M 3.7x10
14

 0.0 52,500 

N2+O   NO+N 7.4x10
11

 0.5 37,940 

NO+O  O2+N 3.0x10
11

 0.5 19,460 

CO+O  C+O2 2.7x10
12

 0.5 69,540 

CO2+O  CO+O2 1.7x10
13

 0.0 26,500 

CO+N  NO+C 2.9x10
11

 0.5 53,630 

CN+O  NO+C 1.6x10
13

 0.1 14,600 

CO+N  CN+O 2.0x10
14

 0.0 38,600 

N2+C  CN+N 2.0x10
14

 0.0 23,200 

 

where the pre-exponential factor A, the temperature exponent 

 and the activation energy C are obtained from experiment 

and are given in Tabs. 2 and 3. M is a third body of collision 

and can be any species. Data for the forward reactions 1 to 4 

and 6 to 10 are taken from [14]. Reaction 5 and 11 to 13 are 

taken from [15]. Data for the reverse reactions are taken from 

[14], except for reactions 5 and 9 for which data are from 

reference [16], and reactions 11 to 13 where data are from 

[17]. For dissociation reactions the preferential model of Park 

is used whereby the forward rates are governed by an average 

temperature va T.TT  . With all combinations to M, a total 

of fifth-three (53) reactions are obtained. 

 

Table 3. Reactions and reverse coefficients. 

 

Reaction A  C 

O2+M  O+O+M 9.0x1015 -0.5 0.0 

N2+M  N+N+M 1.5x1018 -1.0 0.0 

NO+M  N+O+M 3.5x1018 -1.0 0.0 

CO+M  C+O+M 1.0x1018 -1.0 0.0 

CO2+M  CO+O+M 2.4x1015 0.0 2,184 

N2+O   NO+N 1.6x1011 0.5 0.0 

NO+O  O2+N 9.5x1009 1.0 0.0 

CO+O  C+O2 9.4x1012 0.25 0.0 

CO2+O  CO+O2 2.5x1012 0.0 24,000 

CO+N  NO+C 2.6x1010 0.5 0.0 

CN+O  NO+C 3.8x1012 0.5 4,500 

CO+N  CN+O 6.3x1011 0.5 4,500 

N2+C  CN+N 4.4x1014 0.0 4,500 

C. Transport Properties 

For species N, O, N2, O2 and NO curve fits for viscosity as a 

function of temperature have been developed by [18] which 

are of the form 

 

                        CTlnBTlnAexp1.0 .             (26) 

 

[19] develops equivalent curve fits for CO and CO2, while C 

behaves as O. CN data are from [20]. Data for these curve fits 

are given in Tab. 4. 

 

Table 4. Coefficients for viscosity curve fits. 

 

Species A B C 

N 0.0115572 0.4294404 -12.4327495 

O 0.0203144 0.4294404 -11.6031403 

N2 0.0268142 0.3177838 -11.3155513 

O2 0.0449290 -0.0826158 -9.2019475 

NO 0.0436378 -0.0335511 -9.5767430 

CO2 -0.0195274 1.0132950 -13.9787300 

C 0.0203144 0.4294404 -11.6031403 

CO -0.0195274 1.0478180 -14.3221200 

CN -0.0025000 0.6810000 -12.4914000 

 

The thermal conductivity of translational and rotational 

energies for each species is derived from species viscosities 

using an Eucken relation: 

 

                               i,r,vi,t,vi,tr cc2/5k  ,                      (27) 

 

where: 
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The total viscosity and conductivity of the gas mixture are 

calculated using the semi-empirical rule of [21]. To the 

viscosity, for instance: 
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where Xi is the mole fraction of species i and 
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Xi can be calculated from 
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with: 
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Diffusion coefficients are computed as outlined by [22]. The 

species diffusion coefficients are calculated from 
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The diffusion coefficient D is calculated from the Schmidt 

number: 

 

                                               
D

Sc



 .                           (35) 

 

The Schmidt number is set to 0.5 for neutral species and 0.25 

for ions. 

 The species vibrational conductivities are also calculated by 

the species viscosity and the Eucken formula: 

 

                                       iii,v Rk  .                                 (36) 

 

 The vibrational temperature is determined from the 

definition of the internal vibrational energy of the mixture, on 

an iterative process, and uses the Newton-Raphson method to 

find the root, which is merely the approximate vibrational 

temperature. Three steps are suffices to obtain a good 

approximation. 

D. Source Terms 

The source terms for the species mass fractions in the 

chemically reacting flow are giving by: 
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The reaction rate coefficients kf and kr are calculated as a 

function of a rate controlling temperature Ta, as given in 

section B. 

E. Vibrational Relaxation Model 

The vibrational internal energy of a molecule, in J/kg, is 

defined by: 
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and the vibrational internal energy of all molecules is given by: 

 

                                  




mols

s,vsV ece .                               (39) 

 

The heat flux due to translational-vibrational relaxation, 

according to [23], is given by: 
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where: 
*

s,ve  is the vibrational internal energy calculated at the 

translational temperature to the species “s”; and s  is the 

translational-vibrational relaxation time to the molecular 

species, in s. The relaxation time is the time of energy 

exchange between the translational and vibrational molecular 

modes. 

 

Vibrational characteristic time of [24]. According to [25], the 

relaxation time of molar average of [24] is described by: 

                






 

ns
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l,sl

ns
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l
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ss ,                (41) 
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with: 

 

 WM
l,s
  is the relaxation time between species of [24]; 

 WM
s
  is the vibrational characteristic time of [24]; 

  lAVll mNc  and AVll NMm  .                        (42) 

 

Definition of 
WM

l,s
 . For temperatures inferior to or equal to 

8,000 K, [24] give the following semi-empirical correlation to 

the vibrational relaxation time due to inelastic collisions: 

 

                     
  42.18015.0TA

l

WM
l,s

41
l,s

31
l,se

p

B 















 ,            (43) 

 

where: 

 

B = 1.013x10
5
Ns/m

2
 ([26]); 

  pl is the partial pressure of species “l” in N/m
2
; 

  34
s,v

21
l,s

3
l,s 10x16.1A    ([26]);                                 (44) 

  
ls

ls
l,s

MM

MM


 ,                                                         (45) 

being the reduced molecular mass of the collision partners: 

kg/kg-mol; 

  T and s,v  in Kelvin. 

 The values of the characteristic vibrational temperature are 

given in Tab. 5. In the absence of specific vibrational 

relaxation data for CN the molecule has been assumed to 

behave as CO. 

 

Table 5. Vibrational energy constants. 

 

Species v (K) 

N2 3395.0 

O2 2239.0 

NO 2817.0 

CO 3074.0 

CN 3074.0 

 
[27] correction time. For temperatures superiors to 8,000 K, 

the Eq. (43) gives relaxation times less than those observed in 

experiments. To temperatures above 8,000 K, [27] suggests 

the following relation to the vibrational relaxation time: 

 

                                     
svs

P
s

n

1


 ,                                (46) 

 

where: 

                                  



TR8 s

s ,                                 (47) 

 

being the molecular average velocity in m/s; 

                              

2
20

v
T

000,50
10 








  ,                         (48) 

 

being the effective collision cross-section to vibrational 

relaxation in m
2
; and 

 

                                       sss mn  ,                                (49) 

 

being the density of the number of collision particles of 

species “s”. s  in kg/m
3
 and ms in kg/particle, defined by Eq. 

(42). 

 Combining the two relations, the following expression to the 

vibrational relaxation time is obtained: 

 

                                   P
s

WM
ss   .                              (50) 

 

[27] emphasizes that this expression [Eq. (50)] to the 

vibrational relaxation time is applicable to a range of 

temperatures much more vast. 

III. STRUCTURED VAN LEER AND LIOU AND STEFFEN JR. 

ALGORITHMS TO THERMOCHEMICAL NON-EQUILIBRIUM 

As shown in [8], the discrete convective flux calculated by the 

AUSM scheme (“Advection Upstream Splitting Method”) can 

be interpreted as a sum involving the arithmetical average 

between the right (R) and the left (L) states of the (i+1/2,j,k) 

cell face, related to cell (i,j,k) and its (i+1,j,k) neighbour, 

respectively, multiplied by the interface Mach number, and a 

scalar dissipative term. [28] have suggested that the flux 

integrals could be calculated defining each part, dynamic, 

chemical and vibrational,  separately. Hence, to the (i+1/2,j,k) 

interface, considering the dynamical part of the formulation: 
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 .         (51) 

 

 
 The components of the unity vector normal to the flux 

interface, the flux area of each interface and the cell volume 

are defined in [6; 29]. 

 The “a” quantity represents the frozen speed of sound. 

Mi+1/2,j,k defines the advection Mach number at the 
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(i+1/2,j,k) face of the (i,j,k) cell, which is calculated according 

to [8] as: 

 

                                        RLl MMM ,                           (52) 

 

where the separated Mach numbers M
+/-

 are defined by the [3] 

formulas: 

 

  ;1

;1Mif,0
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                      ;1

.1Mif,M

Mif,1M25.0
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              (53) 

 

ML and MR represent the Mach number associated with the left 

and right states, respectively. The advection Mach number is 

defined by: 

 

                             aSwSvSuSM zyx  .                  (54) 

 

 The pressure at the (i+1/2,j,k) face of the (i,j,k) cell is 

calculated by a similar way: 

 

                                          RLl ppp ,                           

(55) 

 

with p
+/-

 denoting the pressure separation defined according to 

the [3] formulas: 
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;              (56) 

 

 The definition of the dissipative term  determines the 

particular formulation of the convective fluxes. According to 

[30], the choice below corresponds to the [3] scheme: 
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k,j,2/1i     (57) 

 

and the choice below corresponds to the [8] scheme: 

 

                               k,j,2/1ik,j,2/1i M   ;                                (58) 

the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is determined by: 
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 The time integration is performed employing the Runge-

Kutta explicit method of five stages, second-order accurate, to 

the three types of convective flux.  

 To the dynamic part, this method can be represented in 

general form by: 
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,         (61) 

 

to the chemical part, it can be represented in general form by: 
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,  (62) 

 

where the chemical source term SC is calculated with the 

temperature Ta. Finally, to the vibrational part: 
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in which: 

 

                     


 

mols

s,vs,C

mols

s,VTv eSqS ;                    (64) 

 

m = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 = 1. 

This scheme is first-order accurate in space and second-order 

accurate in time. The second-order of spatial accuracy is 

obtained by the “MUSCL” procedure. 

 The viscous formulation follows that of [31], which adopts 

the Green theorem to calculate primitive variable gradients. 

The viscous vectors are obtained by arithmetical average 

between cell (i,j,k) and its neighbours. As was done with the 

convective terms, there is a need to separate the viscous flux in 

three parts: dynamical viscous flux, chemical viscous flux and 

vibrational viscous flux. The dynamical part corresponds to 

the first five equations of the Navier-Stokes ones, the chemical 

part corresponds to the following eight equations and the 

vibrational part corresponds to the last equation. 

IV. MUSCL PROCEDURE  

Second order spatial accuracy can be achieved by introducing 

more upwind points or cells in the schemes. It has been noted 

that the projection stage, whereby the solution is projected in 

each cell face (i-1/2,j,k; i+1/2,j,k) on piecewise constant states, 

is the cause of the first order space accuracy of the Godunov 

schemes ([10]). Hence, it is sufficient to modify the first 

projection stage without modifying the Riemann solver, in 

order to generate higher spatial approximations. The state 

variables at the interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. This method 

for the generation of second order upwind schemes based on 

variable extrapolation is often referred to in the literature as 

the MUSCL approach. The use of nonlinear limiters in such 

procedure, with the intention of restricting the amplitude of the 

gradients appearing in the solution, avoiding thus the 

formation of new extrema, allows that first order upwind 

schemes be transformed in TVD high resolution schemes with 

the appropriate definition of such nonlinear limiters, assuring 

monotone preserving and total variation diminishing methods. 

Details of the present implementation of the MUSCL 

procedure, as well the incorporation of TVD properties to the 

schemes, are found in [10]. The expressions to calculate the 

fluxes following a MUSCL procedure and the nonlinear flux 

limiter definitions employed in this work, which incorporates 

TVD properties, are defined as follows. 

 The conserved variables at the interface (i+1/2,j,k) can be 

considered as resulting from a combination of backward and 

forward extrapolations. To a linear one-sided extrapolation at 

the interface between the averaged values at the two upstream 

cells (i,j,k) and (i+1,j,k), one has: 
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, cell (i,j,k);    (65) 

 k,j,1ik,j,2ik,j,1i
R

k,j,2/1i QQ
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QQ  



, cell (i+1,j,k),  (66) 

 

leading to a second order fully one-sided scheme. If the first 

order scheme is defined by the numerical flux 

 

                         
 k,j,1ik,j,ik,j,2/1i Q,QFF  

                       (67) 

 

the second order space accurate numerical flux is obtained 

from 

 

                     
 R

k,j,2/1i
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Higher order flux vector splitting methods, such as those 

studied in this work, are obtained from: 
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.            (69) 

 

All second order upwind schemes necessarily involve at least 

five mesh points or cells. 

 To reach high order solutions without oscillations around 

discontinuities, nonlinear limiters are employed, replacing the 

term  in Eqs. (65) and (66) by these limiters evaluated at the 

left and at the right states of the flux interface. To define such 

limiters, it is necessary to calculate the ratio of consecutive 

variations of the conserved variables. These ratios are defined 

as follows: 

 

   k,j,1ik,j,ik,j,ik,j,1ik,j,2/1i QQQQr 

   

                  k,j,ik,j,1ik,j1ik,j,2ik,j,2/1i QQQQr  

 ,     (70) 

 

where the nonlinear limiters at the left and at the right states of 

the flux interface are defined by  
 k,j,2/1i

L r  and 

 
 k,j,2/1i

R r1 . In this work, five options of nonlinear 

limiters were considered to the numerical experiments. These 

limiters are defined as follows: 
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        llll
MIN
l signal,rMIN,0MAXsignalr  , minmod 

limiter;                                                                                 (73) 

          2,rMIN,1,r2MIN,0MAXr lll
SB
l  , “Super Bee” 
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limiter, due to [33];                                                              (74) 

          


,rMIN,1,rMIN,0MAXr lll
L

l , -limiter, 

(75) 

 

with “l” varying from 1 to 14 (three-dimensional space), signal 

being equal to 1.0 if rl  0.0 and -1.0 otherwise, rl is the ratio 

of consecutive variations of the l
th

 conserved variable and  is 

a parameter assuming values between 1.0 and 2.0, being 1.5 

the value assumed in this work. 

With the implementation of the numerical flux vectors 

following this MUSCL procedure, second order spatial 

accuracy and TVD properties are incorporated in the 

algorithms. 

V. DEGENERACY OF CO2, VIBRATIONAL ENERGY, FROZEN 

SPEED OF SOUND AND TOTAL ENERGY EQUATION 

The CO2 presents three levels of degeneracy, each one 

corresponding to a characteristic vibrational mode. The 

characteristic vibrational temperature and the respective 

degeneracy weights are given in Tab. 6. 

 

Table 6. Values of g’s and v’s. 

 

Degeneracy g v 

1 1 1,903.0 

2 2 945.0 

3 1 3,329.0 

 

Hence, the vibrational energy is determined by: 
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ns
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 ,                                                   (76) 

 

with ev given by Eq. (39). The frozen speed of sound is given 

by the following equation: 

 

                 
mix,vc

R
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a ,                (77) 

 

with: 

 

 R being the universal gas constant; 
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s,vsmix,v ccc ,                                                      (79) 

cv,s being the specific heat at constant volume for each species. 

The total energy is given by: 

 

        







 222

vrefmixmix,fmix,v wvu
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eTRhTce ,    (80) 

 

where: 

 




ns

1s

s,fsmix,f hch ;                                                (81) 

 




ns

1s

ssmix RcR ;                                                        (82) 

 Tref = 298.15K. 

VI. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

As initial conditions, the following flow properties are given: 

init, uinit, , Ttr,init, Tv,init, cs(1), cs(2), cs(3), cs(4), cs(5), cs(7) , 

cs(8), and cs(9), in which:  is the flow attack angle, Ttr,init is 

the initial translational/rotational temperature, Tv,init is the 

initial vibrational temperature, and the cs’s are the initial mass 

fractions of the N, O, N2, O2, NO, C, CO and CN. In this way, 

the cs(6) is easily obtained from: 

 

                                  





ns

6s
1s

ss c1)6(c                                (83) 

 

Initially, Tv,init = Ttr,init. The dimensionless variables which will 

compose the initial vector of conserved variables are 

determined as follows: 

 

dim = init/, udim = uinit/achar, vdim = udim/tg(); 

                 Ttr,dim = Ttr,init/achar and Tv,dim = Tv,init/achar,           (84) 

 

with: 

 

   defining the freestream density; 

   is the flow attack angle; 

  achar obtained from tables of the Mars atmosphere 

properties. 

 

 Considering the species mass fractions and with the values 

of the species specific heat at constant volume, it is possible to 

obtain the mixture specific heat at constant volume. The 

mixture formation enthalpy is also obtained from the mass 

fractions and from the species formation enthalpies. The 

dimensionless internal vibrational energy to each species is 

obtained from: 

 
  1eRe dim,V2N,V

222

T

N,vNNdim,,v 


; 

  1eRe dim,V2O,V

222

T

O,vOOdim,,v 
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  1eRe dim,VNO,V T

NO,vNONOdim,,v 


; 
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.            (85) 

 

 The total internal vibrational energy of the system is 

determined by Eq. (39). Finally, the dimensionless total energy 

is determined by Eq. (80). The initial vector of conserved 

variables is, therefore, defined by: 
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B. Boundary Conditions 

(a) Dynamical Part: 

The boundary conditions are basically of three types: solid 

wall, entrance and exit. These conditions are implemented in 

special cells, named ghost cell. 

 

(a.1) Wall condition: To inviscid flow, this condition imposes 

the flow tangency at the solid wall. This condition is satisfied 

considering the wall tangent velocity component of the ghost 

volume as equals to the respective velocity component of its 

real neighbor cell. At the same way, the wall normal velocity 

component of the ghost cell is equaled in value, but with 

opposite signal, to the respective velocity component of the 

real neighbor cell. It results in: 

 

      rzxryxr
2
xg wnn2vnn2un21u  ;       (87) 

      rzyr
2
yrxyg wnn2vn21unn2v  ;        (88) 

      r
2
zryzrxzg wn21vnn2unn2w  ;      (89) 

 

with “g” related with ghost cell and “r” related with real cell. 

To the viscous case, the boundary condition imposes that the 

ghost cell velocity components be equal to the real cell 

velocity components, with the negative signal: 

 

                 rfrfrf wwandvv,uu  .           (90) 

 

The pressure gradient normal to the wall is assumed be equal 

to zero, following an inviscid formulation and according to the 

boundary layer theory. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering adiabatic 

wall. The ghost volume density and pressure are extrapolated 

from the respective values of the real neighbor volume (zero 

order extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect gas. 

 

(a.2) Entrance condition: 

(a.2.1) Subsonic flow: Four properties are specified and one is 

extrapolated, based on analysis of information propagation 

along characteristic directions in the calculation domain ([34]). 

In other words, four characteristic directions of information 

propagation point inward the computational domain and 

should be specified. Only the characteristic direction 

associated to the “(qn-a)” velocity cannot be specified and 

should be determined by interior information of the calculation 

domain. The total energy was the extrapolated variable from 

the real neighbor volume, to the studied problems. Density and 

velocity components had their values determined by the initial 

flow properties. 

(a.2.2) Supersonic flow: All variables are fixed with their 

initial flow values. 

 

(a.3) Exit condition: 

(a.3.1) Subsonic flow: Four characteristic directions of 

information propagation point outward the computational 

domain and should be extrapolated from interior information 

([34]). The characteristic direction associated to the “(qn-a)” 

velocity should be specified because it penetrates the 

calculation domain. In this case, the ghost volume’s total 

energy is specified by its initial value. Density and velocity 

components are extrapolated. 

(a.3.2) Supersonic flow: All variables are extrapolated from 

the interior domain due to the fact that all five characteristic 

directions of information propagation of the Euler equations 

point outward the calculation domain and, with it, nothing can 

be fixed. 

 

(b) Chemical Part: 

The boundary conditions to the chemical part are also of three 

types: solid wall, entrance and exit. 

 

(b.1) Wall condition: In both inviscid and viscous cases, the 

non-catalytic wall condition is imposed, which corresponds to 

a zero order extrapolation of the species density from the 

neighbor real cells. 

(b.2) Entrance condition: In this case, the species densities of 
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each ghost cell are fixed with their initial values (freestream 

values). 

 

(b.3) Exit condition: In this case, the species densities are 

extrapolated from the values of the neighbor real cells. 

 

(c) Vibrational Part: 

The boundary conditions in the vibrational part are also of 

three types: solid wall, entrance and exit. 

 

(c.1) Wall condition: In both inviscid and viscous cases, the 

internal vibrational energy of the ghost cell is extrapolated 

from the value of its neighbor real cell. 

 

(c.2) Entrance condition: In this case, the internal vibrational 

energy of each ghost cell is fixed with its initial value 

(freestream value). 

 

(c.3) Exit condition: In this case, the internal vibrational 

energy is extrapolated from the value of the neighbor real cell. 

VII. SPATIALLY VARIABLE TIME STEP 

The basic idea of this procedure consists in keeping constant 

the CFL number in all calculation domain, allowing, hence, the 

use of appropriated time steps to each specific mesh region 

during the convergence process. According to the definition of 

the CFL number, it is possible to write: 

 

                            k,j,ik,j,ik,j,i csCFLt  ,                      (83) 

 

where CFL is the “Courant-Friedrichs-Lewy” number to 

provide numerical stability to the scheme; 

  k,j,i

5.022
k,j,i avuc






   is the maximum characteristic 

speed of information propagation in the calculation domain; 

and   k,j,is  is a characteristic length of information transport. 

On a finite volume context,   k,j,is  is chosen as the minor 

value found between the minor baricenter distance, involving 

the (i,j,k) cell and a neighbor, and the minor cell side length. 

VIII. CONFIGURATIONS AND EMPLOYED MESHES  

Figures 1 and 2 present the employed meshes to the structured 

simulations in three-dimensions for the reactive flow around 

the blunt body. Figure 1 shows the structured mesh to inviscid 

simulations, whereas Fig. 2 presents the structured mesh to 

viscous simulations. The viscous case mesh exhibits an 

exponential stretching in the  direction with a value of 7.5%. 

The inviscid case mesh has 33,984 hexahedral cells and 

39,000 nodes, which corresponds in finite differences to a 

mesh of 65x60x10 points. The viscous case mesh has the same 

number of hexahedral cells and nodes. 

 

 
Figure 1. 3D structured mesh for inviscid flow. 

 

 
Figure 2. 3D structured mesh for viscous flow. 

IX. RESULTS 

Tests were performed in a notebook with INTEL Core i7 

processor of 2.0GHz and 8GBytes of RAM memory. As the 

interest of this work is steady state problems, it is necessary to 

define a criterion which guarantees the convergence of the 

numerical results. The criterion adopted was to consider a 

reduction of no minimal three (3) orders of magnitude in the 

value of the maximum residual in the calculation domain, a 

typical CFD-community criterion. In the simulations, the 

attack angle was set equal to zero. 

A. Blunt Body Problem 

The initial conditions are presented in Tab. 7. The Reynolds 

number is obtained from data available in the Mars atmosphere 

tables [35]. The geometry of this problem is a blunt body with 

0.85m of nose radius and rectilinear walls with 10º inclination. 

The far field is located at 20.0 times the nose radius in relation 

to the configuration nose. 
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Table 7. Initial conditions to the blunt body problem. 

 

Property Value 

M 31.0 

 0.0002687 kg/m
3
 

p 8.3039 Pa 

U 6,155 m/s 

T 160.9 K 

Altitude 41,700 m 

cN 0.00 

cO 0.00 

2Nc
 

0.03 

2Oc
 

0.00 

cNO 0.00 

2COc
 

0.97 

cC 0.00 

cCO 0.00 

cCN 0.00 

L 1.7 m 

Re 3.23x10
5
 

 

Inviscid, first order, structured results. Figures 3 and 4 

exhibit the pressure contours obtained by the [3] and the [8] 

schemes, respectively. As can be observed, the [8] pressure 

field is more severe than the [3] pressure field. Good 

symmetry characteristics are observed in both figures. 

 Figures 7 and 8 show the translational / rotational 

temperature contours obtained by the [3] and the [8] schemes, 

respectively. As can be observed, the temperatures are very 

high in comparison with the temperatures observed in reentry 

flows in Earth ([6]). The [3] scheme captures a temperature 

peak of 20,839K, whereas the [8] scheme captures a 

temperature peak of 22,962K. Hence, the [8] algorithm 

captures a more severe temperature field. 

 

 
Figure 3. Pressure contours ([3]). 

 
Figure 4. Pressure contours ([8]). 

 

 
Figure 5. Mach number contours ([3]). 

 

 
Figure 6. Mach number contours ([8]). 

 

 Figures 5 and 6 present the Mach number contours 

captured by the [3] and the [8] algorithms, respectively. Good 

symmetry properties are observed in both figures. The Mach 
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number field captured by the [3] scheme is more severe than 

that captured by the [8] scheme. Both peaks are very high and 

an appropriate thermal protection is necessary to guarantee the 

integrity of the spatial vehicle. This thermal protection should 

be located mainly in the blunt nose, which receives the main 

contribution of the heating. To this range of temperature, the 

main heating contribution is due to radiation and a blunt 

slender profile is recommended to reduce such effect, as was 

used in this example. 

 

 
Figure 7. Translational/rotational temperature contours ([3]). 

 

 
Figure 8. Translational/rotational temperature contours ([8]). 

 

 Figures 9 and 10 exhibit the vibrational temperature 

contours captured by the [3] and the [8] schemes, respectively. 

As can be seen, the most severe vibrational temperature field is 

presented by the [8] solution. The solution presented by the [3] 

scheme is less intense than the [8] solution. Moreover, the [3] 

solution is smoother, whereas the [8] solution presents wiggles 

close to the inclined walls/blunt nose interface regions. 

 Figure  11 shows the mass fraction distributions at the 

stagnation line of the blunt body, generated by the [3] 

algorithm. As can be seen, a discrete dissociation of CO2 

occurs, with discrete formation of CO. 

 

 
Figure 9. Vibrational temperature contours ([3]). 

 

 
Figure 10. Vibrational temperature contours ([8]). 

 
Figure 11. Mass fraction distributions at the stagnation line ([3]). 

 

 Figure 12 presents the mass fraction distributions of the 

nine species along the body stagnation line, generated by the 

[8] algorithm. As in [3] solution, a discrete CO2 dissociation 
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occurs close to the body. The formation of CO, in relation to 

the [3] solution, is more discrete, almost indistinguishable 

 
Figure 12. Mass fraction distributions at the stagnation line ([8]). 

 

Viscous, first order, structured results. Figures 13 and 14 

exhibit the pressure contours obtained by the [3] and the [8] 

schemes, respectively, in the viscous case. As can be observed, 

the pressure field generated by the [3] scheme is more severe 

than that generated by the [8] scheme. Moreover, the shock 

region generated by the [8] scheme is slightly closer to the 

blunt nose than the same region generated by the [3] scheme. 

This behavior suggests that the shock profile of the [8] scheme 

is more realistic, closer to the blunt nose. The shock is 

accurately generated by both schemes and with better 

characteristics than the inviscid shock. 

 

 
Figure 13. Pressure contours ([3]). 

 

 Figures 15 and 16 present the Mach number contours 

obtained by the [3] and the [8] schemes, respectively. The [3] 

solution is more dissipative, generating bigger regions of 

supersonic flow, close to the wall. The [3] solution is more 

severe. 

 

 
Figure 14. Pressure contours ([8]). 

 

 
Figure 15. Mach number contours ([3]). 

 

 
Figure 16. Mach number contours ([8]). 
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Figure 17. Translational/rotational temperature contours ([3]). 

 

 
Figure 18. Translational/Rotational temperature contours ([8]). 

 

 
Figure 19. Vibrational temperature contours ([3]). 

 

 Figures 17 and 18 exhibit the translational/rotational 

temperature contours generated by the [3] and the [8] schemes, 

respectively. In this viscous case, temperatures peaks above 

21,000K are observed. In this range, the radiation heat transfer 

phenomenon is predominant and justifies the use of a blunt 

slender body to fly at the Mars atmosphere. The normal shock 

wave generated by the [3] scheme is more symmetrical and 

heater than the [8] one. The [8] solution presents problems 

with the shock formation and the contours are severely 

damaged. 

 Figures 19 and 20 show the vibrational temperature 

contours obtained by the [3] and the [8] algorithms, 

respectively. The vibrational temperature field generated by 

the [3] scheme is more strength than the respective one due to 

[3]. Moreover, the [8] shock layer is confined to a smaller 

region, close to the wall, than the [3] shock layer region. 

 

 
Figure 20. Vibrational temperature contours ([8]). 

 
Figure 21. Mass fraction distributions at the stagnation line ([3]). 

 

 Figure 21 exhibits the mass fraction distributions of the 

nine species obtained from the [3] scheme. A discrete 

dissociation of the CO2 is observed. As also noted the 

formation of CO is very discrete. 

 Figure 22 shows the mass fraction distributions of the nine 

species obtained from the [8] scheme. A discrete dissociation 

of CO2, close to the blunt nose, is seen. It is not perceptible the 

formation of CO. 
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Figure 22. Mass fraction distributions at the stagnation line ([8]). 

 

Inviscid, second order, structured results. Figures 23 and 24 

show the pressure contours obtained by the [3] and the [8] 

schemes, respectively. The most strength pressure field is due 

to [8]. Both solutions present good symmetry properties. The 

pressure peak due to [3] reaches a value of 715 unities, 

whereas this peak due to [8] reaches a value of 738, 

identifying the latter as more conservative. 

 Figures 29 and 30 show the vibrational temperature 

contours obtained by [3] and by [8] schemes, respectively. The 

hot shock layer of the [8] solution is confined to a smaller 

region than the hot shock layer of the [3] solution. The [3] 

solution is smoother than the [8] one. Moreover, the [8] 

solution is more intense than the respective one of [3]. 

 

 
Figure 23. Pressure contours ([3]). 

 

 Figures 25 and 26 present the Mach number contours due 

to [3] and [8], respectively. The two Mach number fields are 

very similar, quantitatively and qualitatively. 

 Figures 27 and 28 show the translational/rotational 

temperature contours obtained by [3] and [8], respectively. 

The temperature fields due to [3] and [8] reach maximum 

peaks of 22,644K and 22,610K, less intense than in the 

inviscid results. Again these peaks are concentrated in the 

blunt nose region. 

 

 
Figure 24. Pressure contours ([8]). 

 

 
Figure 25. Mach number contours ([3]). 

 

 
Figure 26. Mach number contours ([8]). 
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Figure 27. Translational/rotational temperature contours ([3]). 

 

 
Figure 28. Translational/rotational temperature contours ([8]). 

 

 
Figure 29. Vibrational temperature contours ([3]). 

 

 Figure 31 exhibits the mass fraction distributions along the 

body stagnation line obtained by the [3] scheme. Again a very 

discrete dissociation of the CO2 is observed. The formation of 

CO and O are also almost non-perceptible. 

 
Figure 30. Vibrational temperature contours ([8]). 

 
Figure 31. Mass fraction distributions at the stagnation line ([3]). 

 
Figure 32. Mass fraction distributions at the stagnation line ([8]). 

 

 Figure 32 presents the mass fraction distributions generated 

by the [8] algorithm. It is possible to note a discrete CO2 

dissociation than in the [3] case. As a consequence, the CO 

and O formations are also almost non-perceptible. The 

production of C and CN is less pronounced. 
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Viscous, second order, structured results. In this case, only 

the [3] scheme has produced converged results. Figure 33 

exhibits the pressure contours obtained by the [3]. The shock 

wave is well captured. Good symmetry properties are observed 

in the [3] solution. 

  

 
Figure 33. Pressure contours ([3]). 

 

 
Figure 34. Mach number field ([3]). 

 

 Figure 34 shows the Mach number contours generated by 

[3] algorithm. As can be observed, the [3] scheme is more 

dissipative, spreading the low supersonic region around the 

body. The contours of Mach number due to [3] are 

symmetrical enough. The shock wave develops correctly, 

passing from a normal shock wave, going to oblique shock 

waves and finishing with Mach waves. 

 Figure 35 shows the translational/rotational temperature 

contours obtained by [3] scheme. The [3] temperature field is 

close to 26,000K. It is clear the high temperature at the body 

nose. 

 Figure 36 presents the vibrational temperature contours 

obtained from [3] scheme. The [3] solution presents a more 

severe temperature field in relation to its inviscid counterpart. 

The shock layer of [3] is confined to a small region. 

 
Figure 35. Translational/rotational temperature contours ([3]). 

 

 
Figure 36. Vibrational temperature contours ([3]). 

 
Figure 37. Mass fraction distributions at the stagnation line ([3]). 

 

 Figure 37 exhibits the mass fraction distributions along the 

stagnation line of the blunt body, generated by [3] scheme. As 

can be seen, a meaningful dissociation of CO2 is captured by 

the [3] scheme, with significant formation of CO. 
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Computational data. The computational data of the present 

simulations are shown in Tab. 8. The best performance, 

converging in a minor number of iterations and wasting minor 

time, is due to the [3] scheme, first-order and inviscid case. 

The [8] did not present converged results to the second-order 

viscous case. The convergence to 3 o.r.r. is the minimum 

acceptable to consider a converged result. This happens in 

three cases. All solutions are of good quality. 

 

Table 8. Computational data. 

 

Case CFL Iterations o.r.r.
(1)

 

[3] – 1st – Inviscid 0.2 1,387 4 

[8] – 1st – Inviscid 0.1 3,951 4 

[3] – 1st – Viscous 0.2 3,960 4 

[8] – 1st – Viscous 0.1 6,225 3 

[3] – 2nd – Inviscid 0.1 3,114 4 

[8] – 2nd – Inviscid 0.1 4,105 3 

[3] – 2nd – Viscous 0.2 2,414 3 
 (1)

: o.r.r. = order of residual reduction. 

X. CONCLUSIONS 

This work, first part of this study, describes a numerical tool to 

perform thermochemical non-equilibrium simulations of 

reactive flow in three-dimensions. The [3] and [8] schemes, in 

their first- and second-order versions, are implemented to 

accomplish the numerical simulations. The Euler and Navier-

Stokes equations, on a finite volume context and employing 

structured and unstructured spatial discretizations, are applied 

to solve the “hot gas” hypersonic flow around a blunt body, in 

three-dimensions. The second-order version of the [3] and [8] 

schemes are obtained from a “MUSCL” extrapolation 

procedure (details in [10]) in a context of structured spatial 

discretization. In the unstructured context, only first-order 

solutions are obtained. The convergence process is accelerated 

to the steady state condition through a spatially variable time 

step procedure, which has proved effective gains in terms of 

computational acceleration (see [4-5]). 

 The reactive simulations involve a Mars atmosphere 

chemical model of nine species: N, O, N2, O2, NO, CO2, C, 

CO, and CN. Fifty-three chemical reactions, involving 

dissociation and recombination, are simulated by the proposed 

model. The Arrhenius formula is employed to determine the 

reaction rates and the law of mass action is used to determine 

the source terms of each gas species equation. 

 The results have demonstrated that the most conservative 

scheme is due to [8], although the [3] scheme is more robust, 

providing results to the second-order viscous case. Moreover, 

the [3] scheme presents the best mass fraction profiles at the 

stagnation line, characterizing discrete dissociation of CO2 and 

formation of CO. 
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